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Abstract. Advancing high-resolution Arctic ocean-sea ice modeling is critical for understanding polar amplification and 

improving climate projections but faces challenges from computational limits and cross-scale interactions. The simulation 

capabilities of the ocean-sea ice coupled model (E3SMv2-MPAS) from the Energy Exascale Earth System Model (E3SM) 10 

2.1 for the Arctic sea ocean-sea ice system are systematically evaluated using multi-source observational data and model 

outputs. A latitudinally varying mesh (60 km in the Southern Hemisphere to 10 km in the Arctic) balances computational 

efficiency while integrating low-latitude oceanic influences. Unstructured meshes enhance geometric representation of 

Arctic straits, coupled with a suitable mesoscale eddy transport parameterization to establish a multi-scale simulation 

framework. Numerical results demonstrate E3SMv2-MPAS's superior Arctic simulation performance: (1) Accurate 15 

reproduction of spatial heterogeneity in sea ice concentration, thickness, and sea surface temperature, including their 1995–

2020 trend patterns; (2) Successful reconstruction of three-dimensional thermohaline structures within the Atlantic Water 

layer, capturing Atlantic Water's decadal warming trends and accelerated Atlantification processes — specifically mid-layer 

shoaling, heat content amplification, and reduced heat transfer lag times in the Eurasian Basin. Persistent systematic biases 

are identified: 0.5–1 m sea ice thickness overestimation in the Canadian Basin compared to ICESat observations; 20 

Coordinated sea surface temperature/salinity underestimation and sea ice concentration overestimation in the Greenland and 

Barents Seas; Atlantic Water core temperature overestimation; Regional asymmetries in decadal thermohaline field 

evolution. These systematic biases may be attributed to three principal sources: inadequate representation of eddy dynamics, 

limitations in mixing parameterizations, and insufficient resolution of cross-scale interactions in key gateways (e.g., Fram 

Strait). 25 

1 Introduction 

The Arctic region has emerged as one of the most rapidly transforming components of the Earth system under contemporary 

climate change (Calvin et al., 2023). However, persistent gaps in oceanic observational networks, particularly the lack of 

systematic full-depth and pan-strait measurements across key Arctic gateways, have significantly constrained our 
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understanding of Arctic oceanic transport dynamics. To address these observational limitations, numerical modeling has 30 

become an indispensable tool (Wang et al., 2023). Of particular scientific significance is the thermohaline transport through 

Fram Strait – the principal conduit for Atlantic Water (AW) intrusion into the Arctic basins (Fu et al., 2023; Karami et al., 

2021; Long et al., 2024). Recent studies highlight the necessity to quantify both the spatiotemporal evolution of AW-derived 

heat distribution across Arctic marginal seas and the relative contributions of different vertical heat flux mechanisms 

(Carmack et al., 2015b; Polyakov et al., 2020b). State-of-the-art global climate models (GCMs) provide critical insights into 35 

the evolving climate system under sustained global warming scenarios, enabling the investigation of multi-sphere 

interactions and their associated feedback mechanisms (Duarte et al., 2020; Hinrichs et al., 2021; Liang and Losch, 2018; 

Tian et al., 2022; Wassmann et al., 2015).  

While climate models remain indispensable tools for deciphering Earth system dynamics (Landrum and Holland, 2020), 

their representation of Arctic processes exhibits persistent uncertainties that challenge predictive capabilities (Pan et al., 40 

2023). Systematic biases plague the simulation of critical Arctic phenomena, including amplified warming rates, sea ice 

retreat patterns, and AW layer evolution (Heuzé et al., 2023; Khosravi et al., 2022; Muilwijk et al., 2023; Shu et al., 2019). 

These limitations persist across successive model generations, as evidenced by Coupled Model Intercomparison Project 

Phase 5 (CMIP5) and Phase 6 (CMIP6) revealing substantial errors in Arctic three-dimensional thermohaline structure 

reproduction (Khosravi et al., 2022; Shu et al., 2019). There are mainly four common biases of contemporary models in the 45 

Arctic include: (1) Overestimated AW layer thickness and depth. This systematic vertical structure misrepresentation persists 

across model generations, from early Arctic Ocean Model Intercomparison Project (AOMIP) simulations (Holloway et al., 

2007) through the Coordinated Ocean-ice Reference Experiments, phase II (CORE-II; Ilıcak et al., 2016), and the most 

widely used CMIP5/CMIP6 ensembles (Heuzé et al., 2023; Khosravi et al., 2022; Shu et al., 2019). Among 41 CMIP5 

models evaluated by Shu et al., (2019), 22% failed basic AW identification criteria, while the remaining 32-model mean 50 

overestimated AW layer vertical extent compared to observational benchmarks. CMIP6 shows limited improvement, with 

multi-model mean AW upper boundaries erroneously positioned at ~400 m depth in the Nansen Basin – deeper than 

observed values – and excessive thickness extending to seafloor regions in some regions (Khosravi et al., 2022). (2) Cold 

bias in AW core temperatures. The Alfred Wegener Institute coupled climate model (AWI-CM1) exhibits thermal 

underestimation at 200–600m depths in Eurasian Basin simulations (Hinrichs et al., 2021), consistent with CMIP6's 0.4°C 55 

cold bias relative to hydrographic climatologies (Heuzé et al., 2023). (3) Failure to capture AW warming trends. CMIP5 

models collectively underestimate observed decadal temperature variability, with no model replicating post-2000 

acceleration in AW warming (Shu et al., 2019). (4) Underestimated "Atlantification" (referring to the Arctic Ocean water 

properties becoming increasingly akin to the warmer and saltier Atlantic water). While models project gradual boreal water 

encroachment in the Barents Sea by 2100 (Wassmann et al., 2015), observational analyzes suggest this regime shifts is likely 60 

to occur at a faster pace (Lind et al., 2018). Discrepancies extend to sea ice thermodynamics, where Seasonal Forecast 

System 5 (SEAS5) simulations yield only 10–20 cm winter ice production decline (Polyakov et al., 2022), versus 78–93 cm 

observed losses (Polyakov et al., 2020b). 
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There are numerous and complex reasons that lead to the common deviations in models when simulating the AW. These 

challenges can be categorized into four primary domains: (1) Insufficient horizontal resolution (>50 km in most CMIP6 65 

models) fails to resolve critical boundary currents and mesoscale eddies (Hinrichs et al., 2021); (2) Unrealistic Atlantic-

Arctic exchange through Fram Strait (Hinrichs et al., 2021); (3) Parameterization deficiencies, including the incorrect 

representation of horizontal advection and vertical mixing (Lind et al., 2018); (4) Imperfect knowledge of ocean-sea ice- 

atmosphere triadic feedbacks, especially during winter convection events, hampers accurate simulation of AW ventilation 

processes (Heuzé et al., 2023). To advance model fidelity and reduce uncertainty sources, comprehensive investigations into 70 

systematic model biases are imperative (Hinrichs et al., 2021; Pan et al., 2023). 

Current numerical simulations for polar regions are primarily based on structured grid models. However, the inherent 

limitations of structured grids, particularly the singularity at the North Pole and meridional convergence artifacts, 

fundamentally constrain their capacity to represent Arctic-specific physical processes (Liu et al., 2016). These geometric 

constraints not only distort parameterization schemes but also introduce systematic biases in both regional and decadal-scale 75 

simulations. While global high-resolution configurations could theoretically mitigate such issues, their prohibitive 

computational costs render them impractical for climate-scale applications (Golaz et al., 2019). This technological impasse 

has driven the development of two complementary approaches: (1) Nested grid systems: Though offering advantages in 

temporal discretization flexibility and geometric simplification, their implementation introduces nontrivial challenges in 

mass conservation, interface coupling fidelity, and numerical noise suppression (Hoch et al., 2020). (2) Unstructured mesh: 80 

By enabling localized resolution enhancement in dynamically critical zones while maintaining coarse resolutions elsewhere, 

these meshes eliminate the need for explicit nesting procedures (Scholz et al., 2019). Their continuous spatial adaptability 

allows direct resolution of sub-mesoscale processes without compromising computational efficiency (Wang et al., 2018).  

The application of variable-resolution models with a global unstructured meshes offers distinct advantages for Arctic Ocean 

studies. By employing high-resolution meshes over the Arctic region, these configurations enable accurate simulation of 85 

energy exchange processes across narrow critical channels (e.g., Fram Strait, Bering Strait, Barents Sea Opening and Davis 

Strait). Coarser resolutions in other domains maintain computational efficiency while preserving connectivity between the 

Arctic and extratropical regions (Wang et al., 2018). Among global implementations, two widely adopted models are the 

Finite-Volume Coastal Ocean Model (FVCOM; Chen et al., 2016) and the Finite-Element Sea ice-Ocean circulation Model 

(FESOM; Danilov et al., 2017). In Arctic studies, FVCOM predominantly operates as a regional model, as evidenced by its 90 

frequent implementation in localized domains (e.g., Zhang et al., 2016). This regional focus aligns with FVCOM's original 

design paradigm prioritizing coastal and shelf-sea dynamics through its finite-volume discretization scheme. In contrast, 

FESOM has been predominantly implemented as a global model in Arctic studies, where its implementation has 

demonstrated unprecedented skill in simulating Arctic intermediate water dynamics (Danilov et al., 2017; Wang et al., 2018; 

Wekerle et al., 2013). Notably, Wang et al., (2018) established that FESOM's (a relatively low resolution, ~24 km in the 95 

Arctic) outperforms a set of the then state-of-the-art structured-grid models evaluated by Ilıcak et al., (2016), particularly in 

correcting systematic AW core biases.  
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As a more recent modeling framework relative to FESOM and FVCOM, the Model for Prediction Across Scales (MPAS) 

remains in the nascent phase of Arctic performance evaluation (Ringler et al., 2013), particularly regarding its capacity to 

simulate intermediate water masses and Atlantification processes. The Energy Exascale Earth System Model (E3SM), 100 

evolved from the Community Earth System Model (CESM), incorporates MPAS-Ocean and MPAS-Seaice as its ocean and 

sea ice components. Initial assessments using E3SMv1's ocean-sea ice coupled configuration (60to10 km variable resolution) 

demonstrate promising skill in reproducing pan-Arctic freshwater budgets, gateway current exchanges, and vertical 

hydrographic profiles (Veneziani et al., 2022). Persistent errors in sea ice thickness (SIT) distribution and upper 100 m 

stratification emerge across resolutions, suggesting common structural models deficiencies rather than discretization artifacts. 105 

However, their diagnostic lack the rigorous validation metrics employed by Wang et al., (2018) for FESOM's AW 

representation. Existing assessments predominantly rely on pan-Arctic-basin-averaged diagnostics, obscuring critical vertical 

and regional heterogeneities in intermediate AW layer dynamics (Veneziani et al., 2022).  

This study presents a tripartite evaluation framework for the coupled system of MPAS-Ocean and MPAS-Seaice in E3SM 

version 2 (E3SMv2-MPAS), which compares it with the observational datasets and high-resolution model outputs from 110 

CMIP6 and the Ocean Model Intercomparison Project Phase 2 (OMIP2) to systematically assess MPAS's capacity to address 

persistent Arctic AW biases. In addition, we conduct a comprehensive assessment of Arctic sea ice dynamics, surface layer 

hydrographic properties and three-dimensional thermohaline profile evolution, with particular emphasis on their respective 

strengths, limitations, and potential sources of uncertainty. Innovatively, this work implements a multi-layer connectivity 

analysis examining cross-layer interactions between surface (10 m) and intermediate (400 m) depths. 115 

The subsequent sections are structured as follows: Section 2 provides comprehensive documentation of the E3SMv2-MPAS 

configuration and validation datasets. Section 3 and Section 4 conduct rigorous multi-faceted analyzes of Arctic-specific 

simulations, employing both domain-wide diagnostics and sub-regional decomposition approaches. These sections also 

discuss remaining challenges in polar ocean-sea ice modeling, and proposes targeted development pathways for next-

generation Earth system models. The concluding Section 5 synthesizes key findings. 120 

2 Model Configurations and Data 

2.1 Model Configuration 

Veneziani et al., (2022) demonstrated that refining mesh resolution from 10 km to 6 km triples computational costs without 

yielding significant improvements in simulation fidelity. Their findings suggest that resolving the local Rossby radius of 

deformation across most Arctic regions necessitates resolutions ≤3 km — a requirement currently constrained by prohibitive 125 

computational demands. The model configuration in this paper is described as follows. To address the trade-off between 

high-resolution requirements and computational constraints, our study employs a variable-resolution unstructured mesh 

featuring a meridional transition from 60 km resolution in the Southern Hemisphere to 10 km in the Arctic domain (hereafter 

60to10 km; Fig. 1a). This adaptive meshing approach optimizes computational efficiency while resolving critical processes: 
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Antarctic coastal regions (80°S–90°S) maintain 25 km resolution to capture fine-scale dynamics; The North Atlantic sector 130 

demonstrates strategically prioritized mesh refinement, transitioning from 20 km to 10 km resolution earlier than its Pacific 

counterpart to guarantee at least 15 km resolution in the Gulf Stream extension region (~40°N; Veneziani et al., 2022); The 

North Pacific configuration maintains computational efficiency while achieving approximately 10 km resolution in the 

subpolar North Atlantic sector adjacent to the Arctic Ocean (north of 50°N). 

 135 
Figure 1. (a) Geographical distribution of grid cell size (km) of the E3SMv2-MPAS framework. (b) Bathymetry from the ETOPO 
2022 and key basins/straits north of 60°N. EEB and WEB refer to the eastern and the western Eurasian Basin respectively. The 
black dashed transect along 70°E and 145°W (crossing the North Pole) denotes the location of the transect shown in Fig. 14. 

Numerical stability is achieved through a 5-minute baroclinic time step for ocean dynamics and a 2:1 ratio of sea ice 

thermodynamic to dynamic time-stepping. Vertical mixing processes are parameterized using the K-profile scheme (KPP; 140 

Large et al., 1994). For mesoscale eddy representation, we implement a spatially varying Gent-McWilliams (GM) 

parameterization, incorporating both bolus advection and Redi isopycnal diffusion components (Gent and Mcwilliams, 1990). 

The eddy diffusivity coefficient (κ) exhibits latitudinal dependence: 300 m² s⁻¹ in high-resolution Arctic regions (<20 km 

grid spacing) to maintain moderate mixing intensity, transitioning linearly to 1800 m² s⁻¹ in low-resolution zones (>30 km 

grid spacing) to compensate for unresolved eddy fluxes. The specific configurations of MPAS-Ocean and MPAS-Seaice 145 

within the E3SMv2, including their coupling mechanisms, have been comprehensively documented in Turner et al., (2022) 

and Golaz et al., (2022). 

In addition to the ocean and sea ice components, the atmospheric and river modules in E3SMv2-MPAS are forced by the 

JRA55-do (v1.5; Tsujino et al., 2018) from the Japan Meteorological Agency (JMA). This dataset has high spatiotemporal 

resolution (3-hourly temporal and 0.5625° spatial resolution) and spans the period from 1958 to 2020. Sea surface salinity 150 

(SSS) is relaxed toward Polar science center Hydrographic Climatology (PHC) 3.0 climatology (Steele et al., 2001) with an 

annual restoring timescale. The initial conditions for the MPAS-Ocean and MPAS-Seaice components (including salinity, 

temperature, sea surface height gradients, and surface velocities) were sourced from the E3SMv2 predefined benchmark case 
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files (specifically ocean.ARRM60to10.180715.nc). These fields were generated through a prior forward simulation of the 

MPAS-Ocean model. This initial state is intrinsically consistent with E3SM's dynamical core, having undergone a spin-up 155 

process within the MPAS-Ocean framework prior to being archived as a standard case. Following the configuration of 

forcing and initial conditions (see Fig. 2 for parameter details), E3SMv2-MPAS achieves rapid surface state alignment with 

observational benchmarks during initial integration (surface temperature anomalies <5% within the first month). The 

simulation periods explicitly configured in this study are 1960–1980 and 1995–2020. The exclusion of intermediate years 

(1981–1994) preserves computational resources while maintaining climatological fidelity, as verified through overlapping-160 

period consistency checks (1995–2020). 

 
Figure 2. Configuration details for E3SMv2-MPAS: forcing/initial conditions, runtime settings, and output fields. 

2.2 Evaluation Datasets 

2.2.1 Sea Ice Concentration and Thickness 165 

To comprehensively evaluate sea ice concentration (SIC) performance, both the observations and reanalysis data were 

adopted for validation. SIC datasets used here include: (1) Passive microwave remote sensing data: Sourced from the 

National Oceanic and Atmospheric Administration (NOAA) / National Snow and Ice Data Center (NSIDC) Climate Data 

Record (Version 4; Meier et al., 2021) with a spatial resolution of 25 km × 25 km; (2) HadISST1 data: Provided by the UK 

Met Office Hadley Centre (Rayner et al., 2003) at 1° × 1° resolution; (3) ERA5 reanalysis: Generated by the European 170 

Centre for Medium-Range Weather Forecasts (ECMWF; Hersbach et al., 2020) at 0.25° × 0.25° resolution. 

For sea ice thickness (SIT) validation, we utilize four key datasets: (1) Pan-Arctic Ice-Ocean Modeling and Assimilation 

System (PIOMAS; Zhang and Rothrock, 2003): This reanalysis product, extensively validated against satellite and in situ 

observations, provides reliable Arctic SIT spatial distributions and long-term trends (Laxon et al., 2013; Schweiger et al., 

2011; Stroeve et al., 2014). (2) PIOMAS-20C reanalysis (Schweiger et al., 2019): Driven by ECMWF's atmospheric 175 

reanalysis of the 20th century (ERA-20C) and calibrated with historical in situ/aircraft measurements, this dataset enables 
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analysis of pre-satellite-era SIT variability (1960–1980). (3) Ice, Cloud, and Land Elevation Satellite-1 (ICESat-1; 2003–

2008): Equipped with the Geoscience Laser Altimeter System (GLAS; Zwally et al., 2002), enabling pioneering lidar-based 

SIT retrievals. (4) ICESat-2 (2018–2020): Employing the Advanced Topographic Laser Altimeter System (ATLAS; Petty et 

al., 2020) to acquire high-resolution three-dimensional SIT measurements, significantly enhancing small-scale ice 180 

monitoring capabilities. 

2.2.2 Sea Surface Temperature and Salinity 

Sea surface temperature (SST) validation dataset is NOAA's 1/4° Daily Optimum Interpolation Sea Surface Temperature 

(OISST; Huang et al., 2021) dataest, represents a long-term climate data record integrating multi-platform observations from 

satellites, ships, buoys, and Array for real-time geostrophic oceanography (Argo) floats. Spatially continuous global SST 185 

fields are reconstructed using optimal interpolation to fill data gaps. 

For sea surface salinity (SSS), the National Aeronautics and Space Administration (NASA) sponsored Optimum 

Interpolation Sea Surface Salinity (OISSS; Melnichenko et al., 2016) dataest was applied. The product integrates multi-

satellite observations from Aquarius, Soil Moisture Active Passive (SMAP), and Soil Moisture and Ocean Salinity (SMOS) 

through optimal interpolation. Continuous 2011-present data are generated through cross-satellite bias correction and spatial 190 

filtering, with SMOS data filling SMAP gaps. 

2.2.3 Three-Dimensional Thermohaline 

The World Ocean Atlas 2023 (WOA23; Locarnini et al., 2024; Reagan et al., 2024) served as the primary validation dataset 

for three-dimensional thermohaline properties. WOA23 produces high-resolution global climatological temperature and 

salinity fields via interpolation of historical observations (Argo floats, ship-based measurements, satellite data), covering 195 

three periods in this study: 1991–2020, 1995–2004, and 2005–2014. 

To assess long-term thermohaline evolution (1960–1980 vs. 2000–2020), the UK Met Office's EN.4.2.2 dataest (Good et al., 

2013) was combined. EN.4.2.2 assimilates multi-source in situ data (ship observations, Argo floats, Conductivity-

Temperature-Depth (CTD) profilers, moored buoys), applies rigorous quality control, and reconstructs 1° × 1° gridded 

temperature/salinity fields spanning 0–5500 m depth from 1900 onward. 200 

Furthermore, annual mean temperature and salinity profiles (1970–2017) over the East Eurasian Basin, the West Eurasian 

Basin, the Chukchi Sea, and the Beaufort Gyre from Muilwijk et al., (2023) were included. These data derive from Russian, 

American, Canadian, and European expeditions, including ship/aircraft surveys, manned drifting stations, autonomous buoys, 

and submarine measurements. 

To evaluate E3SMv2-MPAS performance among models, comparisons were made against CMIP6's 13 high-resolution 205 

models (Muilwijk et al., 2023) and five high-low resolution model pairs from OMIP2 (Wang et al., 2024), covering 1995–

2014 and 1958–2018, respectively (see Table 1 and references for details). 
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Table 1. Numerical implementations of E3SMv2-MPAS, E3SM-Arctic-OSI (Veneziani et al., 2022), 13 CMIP6 models (Muilwijk et 
al., 2023), and 5 OMIP2 model pairs (Wang et al., 2024), detailing grid type, horizontal resolution in Arctic, and vertical grid. 

 Model Grid type 

Horizontal 

resolution  

in Arctic (km) 

Vertical grid  

(No. of levels) 

E3SMv2 E3SMv2-MPAS Unstructured 10 z (80) 

E3SMv1 E3SM-Arctic-OSI Unstructured 10 z (80) 

CMIP6 

BCC-CSM2-MR Tripolar 54 z (40) 

CAMS-CSM1-0 Tripolar 54 z (50) 

CESM2 Rotated 41 z (60) 

CanESM5 Tripolar 50 z (45) 

GFDL-CM4 Tripolar 9 ρ-z* (75) 

GFDL-ESM4 Tripolar 18 ρ-z* (75) 

IPSL-CM6A-LR Tripolar 49 z* (75) 

GISS-E2-1-H Regular 46 ρ-z-σ (32) 

MIROC6 Tripolar 39 z-σ (62) 

MPI-ESM1-2-HR Tripolar 36 z (40) 

MRI-ESM2-0 Tripolar 39 z* (60) 

NorESM2-LM Tripolar 38 ρ-z (53) 

UKESM1-0-LL Tripolar 50 z* (75) 

OMIP2 

ACCESS-MOM_3.6km Tripolar 3.6 z* (70) 

ACCESS-MOM_9km Tripolar 9 z* (50) 

AWI-FESOM_4.5km Unstructured 4.5 z (47) 

AWI-FESOM_24km Unstructured 24 z (47) 

CMCC-NEMO_3.2km Tripolar 3.2 z (98) 

CMCC-NEMO_51km Tripolar 51 z (50) 

FSU-HYCOM_3.6km Tripolar 3.6 ρ-z-σ (36) 

FSU-HYCOM_32km Tripolar 32 ρ-z-σ (41) 

IAP-LICOM_6.8km Tripolar 6.8 η (55) 

IAP-LICOM_72km Tripolar 72 η (30) 
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Additionally, three-dimensional thermohaline outputs from E3SMv1 (60to10 km resolution; 2005–2016 climatology; 210 

Veneziani et al., 2022) were analyzed. Golaz et al., (2022) explicitly confirm that the oceanic component MPAS-Ocean in 

E3SMv2 contains no substantial improvements over its E3SMv1 predecessor. Key differences between E3SM-Arctic-OSI 

(Veneziani et al., 2022) and E3SMv2-MPAS involve GM eddy diffusivity coefficient (κ) settings. E3SM-Arctic-OSI 

disables GM parameterization (κ=0) in Arctic regions, while E3SMv2-MPAS maintains moderate mesoscale diffusion. 

Though GM deactivation enhances frontal sharpness (e.g., ice-edge zones and thermal gradients), most Arctic regions 215 

feature first baroclinic Rossby radii <10 km (Nurser and Bacon, 2014). At 10 km resolution, unresolved mesoscale eddies 

may cause transport deficiencies, non-physical gradients, and circulation distortions (e.g. anomalous sea ice distributions and 

systematic thermohaline circulation biases). 

2.2.4 Atlantic Water Core 

Observed Atlantic Water (AW) core temperature and depth data were sourced from Richards et al., (2022), comprising 220 

55,841 profiles (1977–2018). AW core was defined as the warmest layer within salinity >34.7 PSU profiles. To ensure 

accuracy, only profiles exceeding 500 m depth with sampling starting above 100 m were retained. Raw profiles were 

smoothed using an 80 m vertical moving average (40 m window) to remove spikes caused by thermohaline intrusions and 

eddies while preserving overall thermal structure. 

Wang et al., (2024)'s OMIP2 dataset includes AW core temperature (defined as maximum temperature in water columns 225 

over seafloor depths >150 m; 2006–2017) from five high-low resolution model pairs. This dataset is employed to benchmark 

E3SMv2-MPAS's AW core temperature simulations against multi-model ensembles. 

3 Arctic Physical System States 

3.1 Sea Ice Characterization 

This study focuses on the Arctic region, systematically evaluating the simulation performance of the E3SMv2-MPAS 230 

coupled model for sea ice concentration (SIC), sea ice thickness (SIT), sea surface temperature (SST), and sea surface 

salinity (SSS) at first. Through comparisons with multi-source observational datasets and reanalysis products, combined with 

climate-state analysis (1995–2020) and trend diagnostics across two periods (1960–1980 and 1995–2020), model strengths 

and limitations in polar environmental simulations are identified. 

Multi-dataset validation using NSIDC satellite remote sensing (Meier et al., 2021), Hadley in situ assimilation (Rayner et al., 235 

2003), and ERA5 reanalysis (Hersbach et al., 2020) demonstrates that E3SMv2-MPAS effectively captures spatial 

heterogeneity in Arctic SIC climatology (Fig. 3a–g). Consistent spatial bias patterns are observed across datasets, with 

persistent positive bias centers (ΔSIC>0.3) identified along the southwestern Greenland Sea shelf margin and the northern 

Barents Sea slope. Notably, E3SMv2-MPAS exhibits superior performance relative to CMIP6 ensemble members, 

demonstrating smaller spatial bias magnitudes than most models (Long et al., 2021). E3SMv2-MPAS successfully 240 
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reproduces SIC seasonal cycles and interannual variability, maintaining root mean square errors (RMSE) values of 0.040, 

0.052, and 0.051 against NSIDC, Hadley, and ERA5 datasets respectively (Fig. 3h). This validates the dynamic framework's 

effectiveness in capturing sea ice-atmosphere coupling mechanisms. However, the asymmetric seasonal biases in E3SMv2-

MPAS are identified, which shows: systematic winter overestimation contrast with moderate summer underestimation 

(primarily compared with NSIDC), suggesting potential improvements needed in simulating ice-albedo feedback and melt 245 

pond dynamics. Trend analysis confirms the model's climate response capability. During the rapid decline period (1995–

2020), E3SMv2-MPAS accurately captures accelerated SIC reduction trends, showing better agreement with NSIDC 

observations than Hadley and ERA5 products. For the weak-trend period (1960–1980), the model reproduces quasi-stable 

sea ice coverage characteristics while maintaining overestimated seasonal variability amplitudes. The accelerated SIC 

decline in the recent period compared to historical decades highlights the model's ability to replicate trend amplification 250 

under intensified forcing, thereby bolstering confidence in its scenario-dependent projections. 

 
Figure 3. (a–d) 1995–2020 climatological mean sea ice concentration (SIC) spatial distributions: (a) E3SMv2-MPAS simulations, (b) 
NSIDC observational product, (c) Hadley Centre HadISST data, (d) ERA5 reanalysis. (e–g) SIC bias fields: (e) E3SMv2-MPAS vs. 
NSIDC, (f) E3SMv2-MPAS vs. Hadley, (g) E3SMv2-MPAS vs. ERA5. (h) Pan-Arctic (70°N–90°N) mean SIC time series for 1960–255 
1980 and 1995–2020, with dashed lines indicating linear trends (E3SMv2-MPAS: gray; NSIDC: blue; Hadley: green; ERA5: 
orange) derived from least-squares regression. 
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Beyond SIC, SIT serves as a critical parameter governing sea ice dynamics, with its simulation accuracy directly modulating 

the spatiotemporal heterogeneity of ice volume. We systematically quantify E3SMv2-MPAS's capability in reproducing SIT 

spatiotemporal evolution (Fig. 4). Comparative analysis demonstrates the model effectively captures Arctic SIT spatial 260 

gradients (Fig. 4a–c). Although the model generally overestimates SIT, the time series analysis successfully simulates 

continuous thinning from ~1.8 m to ~1.3 m during 1995–2020 (Fig. 4d). Notably, however, the simulated thinning rates 

remain slightly lower than PIOMAS results. Stable RMSE values (~0.37) throughout this period confirm robust simulation 

of long-term SIT evolution. For the pre-satellite era (1960–1980), evaluation using PIOMAS-20C shows E3SMv2-MPAS 

reproduces the 6-year cyclic "increase-decrease-increase" SIT fluctuations during 1960–1978 (Fig. 4d). While PIOMAS-20C 265 

shows no statistically significant SIT trend during 1960–1980, E3SMv2-MPAS simulates a pronounced thickening trend in 

this period, potentially linked to its systematic overestimation of regional ice thickness in areas like the Beaufort Sea (Fig. 

4c). Nevertheless, across the multi-decadal scale (1960–2020), this coupled system demonstrates a reasonable representation 

of Arctic sea ice responses to climate forcing. 

 270 
Figure 4. (a–b) 1995–2020 climatological mean sea ice thickness (SIT) spatial distributions: (a) E3SMv2-MPAS, (b) PIOMAS. (c) 
SIT bias field: E3SMv2-MPAS vs. PIOMAS. (d) Pan-Arctic (70°N–90°N) mean SIT time series for 1960–1980 and 1995–2020, with 
dashed lines indicating linear trends (E3SMv2-MPAS: black; PIOMAS: red) derived from least-squares regression. 
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Spatial analysis identifies significant zonal positive biases (ΔSIT>1.5 m) along the eastern and northern Greenland Sea shelf 

and the Canadian Archipelago (Fig. 4c). Considering PIOMAS's known limitations in overestimating thin ice while 275 

underestimating thick ice (Laxon et al., 2013; Schweiger et al., 2011), additional validation using ICESat altimetry data 

(Petty et al., 2023) is conducted (Fig. 5). Case studies of specific months (February 2005, October 2005, October 2006, 

March 2007, March 2019, October 2019) show improved agreement with ICESat observations in the Canadian Archipelago 

and Greenland coastal regions compared to PIOMAS. Persistent 0.5–1 m positive biases in the Canadian Basin interior are 

hypothesized to originate from an overestimated intensity of the Beaufort Gyre in E3SMv2-MPAS, potentially enhancing sea 280 

ice convergence processes. 

 
Figure 5. Seasonal sea ice thickness spatial distributions. Rows: (1) E3SMv2-MPAS, (2) ICESat, (3) PIOMAS. Columns: (1) 
February 2005, (2) October 2005, (3) October 2006, (4) March 2007, (5) March 2019, (6) October 2019.  

3.2 Surface Thermohaline Signatures 285 

SST and SSS engage in complex bidirectional coupling with the atmosphere-ice system through ice/atmosphere-ocean 

interfacial energy-mass exchange processes. This section evaluates the spatiotemporal co-variability of SST/SSS to elucidate 

E3SMv2-MPAS's representation of ocean-sea ice-atmosphere interaction mechanisms. 

OISST-based validation demonstrates E3SMv2-MPAS accurately reproduces key Arctic SST spatial patterns: (1) 

temperature gradients decreasing from shelves to central basins, and (2) warm-core features in southern Barents Sea open 290 

waters (Fig. 6a–c). Systematic regional biases are identified: the cold biases in the Greenland Sea (ΔSST≈-2–0°C) spatially 

correlate with an overestimation of SIC in the same region, while positive deviations (ΔSST≈0–2°C) occur near Svalbard's 
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western coast and the Eurasian continental margins. Notably, continental coastal biases are spatially decoupled from Atlantic 

inflow pathways, with formation mechanisms likely associated with inaccurate vertical mixing processes stemming from 

stratification stability biases in shelf regions. E3SMv2-MPAS successfully captures Arctic SST warming trends during the 295 

1995–2020 period, showing high consistency with OISST in accelerated trend characteristics (Fig. 6d). Seasonal cycle and 

interannual variability simulations remain within acceptable error ranges (RMSE=0.24), confirming appropriate responses to 

surface thermal forcing. Furthermore, the model accurately captures both the pronounced SST increase and accelerated 

decadal warming trend during 1995–2020 relative to the 1960–1980 baseline period. These simulated changes show a strong 

coupling with the accelerated decline in SIC and SIT concurrently (Figs. 3h, 4d). 300 

 
Figure 6. (a–b) 1995–2020 climatological mean sea surface temperature (SST) spatial distributions: (a) E3SMv2-MPAS, (b) OISST. 
(c) SST bias field: E3SMv2-MPAS vs. OISST. (d) Pan-Arctic (70°N–90°N) mean SST time series for 1960–1980 and 1995–2020, 
with dashed lines indicating linear trends (E3SMv2-MPAS: black; OISST: red) derived from least-squares regression. 

E3SMv2-MPAS demonstrates comparatively weaker performance in SSS simulation versus sea ice and SST variables. 305 

Spatially heterogeneous biases are observed: negative deviations (ΔSSS=-0–1 PSU) in the Barents and Greenland Seas 

contrast with pronounced positive biases (ΔSSS=2–5 PSU) in the Beaufort Sea and the Kara-Beaufort shelf regions (Fig. 7a–

c). The 3 PSU overestimation in the Beaufort Sea aligns with advanced assimilation model (such as HYCOM and 
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GLORYS12) biases reported by Hall et al., 2021, suggesting common limitations in Arctic shelf freshwater transport 

representation. Specifically, inadequate parameterization of surface freshwater budgets and associated processes (e.g., 310 

precipitation-evaporation fluxes, river discharge, and ice-ocean interactions) may constrain freshwater cycle simulations 

(Wang et al., 2024). The Beaufort Sea SIT overestimation identified previously (Fig. 4a–c) potentially exacerbates salinity 

biases through reduced freshwater release (Kelly et al., 2019). If the intensity of the Beaufort Gyre is overestimated (as 

discussed in Section 3.1), enhanced freshwater retention could impede westward shelf transport to the Kara Sea, potentially 

driving salinity overestimation in the Kara-Beaufort shelf. Despite spatial biases, E3SMv2-MPAS demonstrates credible 315 

simulation of seasonal cycle phasing and amplitude in the Barents Sea SSS, while the temporal variations in the Beaufort Sea 

show agreement levels comparable to mainstream reanalysis products (Fig. 7d–e; Hall et al., 2021). 

 
Figure 7. (a–b) September 2011–December 2020 climatological mean sea surface salinity (SSS) spatial distributions: (a) E3SMv2-
MPAS, (b) OISSS. (c) SSS bias field: E3SMv2-MPAS vs. OISSS. (d–e) Regional SSS time series in (d) the Barents Sea and (e) the 320 
Beaufort Sea (black boxes in a–c; E3SMv2-MPAS: black; OISSS: red). 

In the Greenland and Barents Seas, systematic underestimation of SST and SSS (Figs. 6a–c, 7a–c) coincides with 

overestimation of SIC (Fig. 3a–g). Three-dimensional thermohaline profile analysis (1995–2014, with WOA23, figure 

omitted) reveals satisfactory mid-depth salinity simulations but overestimation of temperature in the Barents Sea subsurface 

layers. This indicates effective capture of AW inflow (characterized by high temperature and salinity) through the Barents 325 
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Sea Opening (BSO), albeit with slight thermal influence overestimation. Surface thermohaline underestimation may 

originate from insufficient representation of subsurface-to-surface vertical mixing processes: reduced surface heat/salt fluxes 

caused by underestimated mixing efficiency could enhance sea ice maintenance mechanisms, thereby amplifying 

overestimation of SIC. These vertical process biases, combined with surface freshwater transport limitations, constitute key 

uncertainty sources in regional climate simulations. 330 

3.3 Three-Dimensional Thermohaline Structure 

Accurate simulation of three-dimensional thermohaline fields remains a core technical challenge in ocean model 

development, directly determining model capability in representing Arctic multi-sphere coupling processes (ocean-ice-

atmosphere). While preliminary evaluations of sea ice thickness-concentration and surface thermohaline diagnostics have 

validated E3SMv2-MPAS's capacity to simulate Arctic shallow-layer thermal states, subsurface-to-deep thermohaline 335 

structure biases may still induce circulation distortions, material transport deviations, cross-basin exchange inaccuracies, and 

climate feedback misrepresentations. A multi-dimensional verification framework including spatial heterogeneity 

diagnostics, temporal evolution analysis and three-dimensional dynamical validation is established to assess E3SMv2-

MPAS's three-dimensional thermohaline simulation performance comprehensively. 

Using the 1995–2014 climatological mean profiles, systematic comparisons are conducted between E3SMv2-MPAS, 340 

observational data (Muilwijk et al., 2023), and 13 high-resolution CMIP6 models (horizontal resolution <60 km; Muilwijk et 

al., 2023; see Table 1) across four regions: the western Eurasian Basin, the eastern Eurasian Basin, the Chukchi Sea, and the 

Beaufort Sea. Thermohaline profile characteristics (0–1000 m depth) are evaluated through vertical structure evolution and 

regional variability analyzes. 

Although the CMIP6 models have relative high-resolution, they exhibit systematic biases in AW core characterization as 345 

follows: (1) Substantial underestimation of core temperatures (e.g., <0°C in CanESM5 and GISS-E2-1-H), and (2) 

Overestimated AW layer thickness with obviously downward-shifted core depths. These challenges are particularly 

pronounced in the western Eurasian Basin influenced by the Fram Strait branch (one of two primary AW inflow pathways) 

compared to the eastern Eurasian Basin and the Amerasian Basin sector. Observational data reveal maximum temperatures 

(1.5°C) at 250 m depth in the western Eurasian Basin, decreasing to 0°C at 800 m (Fig. 8a). However, all CMIP6 models 350 

show structural biases with temperature maxima averaging 500 m depth and underestimated vertical temperature gradients. 

In contrast, E3SMv2-MPAS can successfully reproduces observed vertical temperature structure, matching the observed 250 

m temperature maximum depth and maintaining temperature decline to 0°C at 1000 m depth. Despite a 1°C core temperature 

overestimation and 200 m layer thickness bias, its temperature profile RMSE (0.448) significantly outperforms other CMIP6 

models. 355 
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Figure 8. (a–d) 1995–2014 climatological mean temperature profiles from observations (Muilwijk et al., 2023), E3SMv2-MPAS, 
and the 13 models of CMIP6 (Muilwijk et al., 2023). (e–h) The same as panels (a–d) but for salinity profiles. Basins: the Western 
Eurasian (a/e), the Eastern Eurasian (b/f), the Chukchi Sea (c/g), the Beaufort Sea (d/h). 

Observational spatial heterogeneity shows progressive temperature core reductions (1.6°C→1.4°C→0.7°C→0.6°C) and 360 

deepening core depths (250 m→290 m→400 m→420 m) from the western Eurasian Basin to the Beaufort Sea (Fig. 8a–d). 

CMIP6 models fail to capture these spatial gradients, exhibiting homogeneous vertical structures. E3SMv2-MPAS maintains 

systematic temperature overestimation (~0.5°C average) while successfully reproducing spatiotemporal evolution of vertical 

thermal structures. In salinity simulations, systematic underestimation is observed across CMIP6 models within the upper 

500 m (Fig. 8e–h). E3SMv2-MPAS demonstrates optimal salinity profile fitting capability through observational agreement 365 

starting from 200 m depth, as evidenced by the western Eurasian Basin RMSE of 0.204. 

Regional evaluations confirm E3SMv2-MPAS's optimal performance across key metrics: the western Eurasian Basin 

(temperature RMSE=0.448, salinity RMSE=0.204; Table 2), the eastern Eurasian Basin (0.344, 0.356), the Chukchi Sea 

(0.686, 0.302), and the Beaufort Sea (0.349, 0.811). Notably, IPSL-CM6A-LR marginally outperforms E3SMv2-MPAS in 

the eastern Eurasian Basin and the Beaufort Sea salinity simulations, primarily due to surface salinity overestimation in 370 

E3SMv2-MPAS. 
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Table 2. Root mean square errors (RMSE) for temperature (Temp.; °C) and salinity (Sal.; PSU) in 0–1000 m vertical profiles from 
E3SMv2-MPAS and 13 CMIP6 models (Muilwijk et al., 2023), evaluated against observation (Muilwijk et al., 2023) in four regions: 
the Western Eurasian Basin, the Eastern Eurasian Basin, the Chukchi Sea, and the Beaufort Sea. Performance ranking: * 375 
indicates lowest RMSE per basin/variable, underlined values denote second-lowest. 

 
Western Eurasian Basin Eastern Eurasian Basin Chukchi Sea Beaufort Sea 

Temp. Sal. Temp. Sal. Temp. Sal. Temp. Sal. 

E3SMv2-MPAS 0.448* 0.204* 0.344* 0.356 0.686* 0.302* 0.349* 0.811 

BCC-CSM2-MR 0.742 1.711 0.700 1.842 1.088 0.784 0.996 0.922 

CAMS-CSM1-0 0.692 2.276 0.635 2.263 0.913 1.094 0.916 1.007 

CESM2 0.804 0.717 0.672 1.027 0.784 0.635 0.760 0.958 

CanESM5 1.497 1.389 1.317 0.698 1.254 0.739 1.047 1.307 

GFDL-CM4 0.875 0.296 0.903 1.226 0.941 1.206 0.730 2.135 

GFDL-ESM4 0.641 0.449 0.827 0.787 1.011 1.389 0.705 2.195 

IPSL-CM6A-LR 0.620 1.389 0.584 0.256* 0.830 1.873 0.485 0.562* 

GISS-E2-1-H 1.320 0.795 1.365 1.119 1.381 1.075 1.183 1.946 

MIROC6 1.070 0.790 0.780 0.890 0.905 1.054 0.606 1.642 

MPI-ESM1-2-HR 0.795 0.856 0.687 1.200 0.833 0.693 0.564 1.309 

MRI-ESM2-0 0.839 0.556 0.768 0.930 0.913 1.198 0.701 1.817 

NorESM2-LM 0.745 0.819 0.904 1.040 0.884 0.694 0.625 1.220 

UKESM1-0-LL 1.022 1.134 1.102 1.076 1.278 1.444 0.883 2.122 

 

Comprehensive analysis of higher-resolution CMIP6 models reveals common thermohaline simulation biases (Fig. 8). To 

evaluate resolution sensitivity in Arctic Intermediate Water simulations, the assessment framework is extended to five 

resolution-matched model pairs from OMIP2 (Wang et al., 2024; see Table 1). Thermohaline profile characteristics in the 380 

Eurasian and Amerasian Basins are systematically compared between high/low-resolution model pairs (solid/dashed lines), 

E3SMv2-MPAS, and WOA23 data (Locarnini et al., 2024; Reagan et al., 2024) to elucidate ocean model grid configuration 

impacts (Fig. 9). Low-resolution models exhibit persistent CMIP6 systematic biases, while their high-resolution counterparts 

(excluding IAP-LICOM-6.8km) demonstrate improved intermediate water core temperature and vertical structure 

simulations. High-resolution models successfully reproduce observed zonal gradients showing temperature maxima 385 

decreasing from the Eurasian Basin (1.3°C@250 m) to the Amerasian Basin (0.7°C@400 m), confirming resolution 

enhancement benefits for oceanic frontal processes. In the Eurasian Basin where simulation biases are most pronounced, the 
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majority of high-resolution models – with the exception of E3SMv2-MPAS (10 km) and FESOM variants (4.5/24 km) – 

continue to exhibit overestimated AW layer thickness. WOA23 observations indicate temperature decline to 0°C at 800 m 

depth, whereas most models maintain ~0.5°C at 1000 m (Fig. 9a). This persistent discrepancy demonstrates that resolution 390 

enhancement alone remains insufficient to fully resolve key technical bottlenecks in Arctic Intermediate Water simulations. 

Notably, E3SMv2-MPAS and FESOM models exhibit breakthrough performance (Table 3). Despite comparable resolutions 

to other high-resolution models (e.g., ACCESS-MOM 9 km, FSU-HYCOM 32 km), unstructured mesh configurations 

enable refined representation of key hydrographic gateways like the Fram Strait. Compared to tripolar grid models suffering 

numerical dissipation near complex coastlines, variable mesh designs achieve reduced the Eurasian Basin temperature errors 395 

under equivalent computational resources. Model grid type and computational efficiency exhibit nonlinear relationships. 

Unstructured meshes (FESOM/MPAS) permit dynamic optimization through localized refinement in critical regions (e.g., 

AW intrusion pathways). This targeted refinement strategy provides new technical approaches for Arctic ocean modeling, 

particularly under accelerating Atlantification processes. 

 400 
Figure 9. (a–b) 1995–2014 climatological mean temperature profiles in (a) the Eurasian Basin and (b) the Amerasian Basin: 
Observations (WOA23; red), E3SMv2-MPAS (black), OMIP2 models (Wang et al., 2024; dashed: low-resolution, solid: high-
resolution). (c–d) The same as panels (a–b) but for salinity profiles. 
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Table 3. Root mean square errors (RMSE) for temperature (Temp.; °C) and salinity (Sal.; PSU) in 0–1000 m vertical profiles from 
E3SMv2-MPAS and 5 OMIP2 model pairs (Wang et al., 2024), evaluated against WOA23 in the Eurasian Basin and the 405 
Amerasian Basin. Performance ranking: * indicates lowest RMSE per basin/variable, underlined values denote second-lowest. 

 
Eurasian Basin Amerasian Basin 

Temp. Sal. Temp. Sal. 

E3SMv2-MPAS 0.223* 0.130* 0.143* 0.219* 

ACCESS-MOM_3.6km 0.437 0.202 0.217 0.663 

ACCESS-MOM_9km 0.583 0.208 0.423 0.557 

AWI-FESOM_4.5km 0.236 0.205 0.207 0.390 

AWI-FESOM_24km 0.230 0.187 0.253 0.397 

CMCC-NEMO_3.2km 0.453 0.762 0.276 1.055 

CMCC-NEMO_51km 0.869 0.600 0.558 0.875 

FSU-HYCOM_3.6km 0.409 0.240 0.186 0.719 

FSU-HYCOM_32km 1.012 0.442 0.485 0.797 

IAP-LICOM_6.8km 0.716 0.457 0.346 0.882 

IAP-LICOM_72km 0.435 0.319 0.456 0.716 

 

Following systematic benchmarking against CMIP6/OMIP2 multi-resolution models, we investigate parameterization 

sensitivity within the same coupled framework (E3SM). By comparing mesoscale eddy parameterization schemes between 

E3SMv1 and v2 (as detailed in Section 2.2.3), we dissect their impacts on simulation fidelity and elucidate underlying 410 

mechanism. Comparative assessments of E3SM-Arctic-OSI (E3SMv1; Veneziani et al., 2022) and E3SMv2-MPAS (both 

60to10 km) are performed across the Eurasian Basin, the Amerasian Basin, and sub-regions (Fig. 10). E3SMv2-MPAS 

demonstrates improved temperature vertical structure simulations (Fig. 10a–f), reducing Eurasian Basin core temperature 

overestimation from 1.3°C to 0.5°C and correcting 100 m core depth shoaling. Optimized mesoscale transport 

parameterization better represents turbulent mixing effects on water mass structure. For salinity, E3SM-Arctic-OSI exhibits -415 

0.7 PSU biases above 200 m in the Eurasian Basin, reduced to -0.13 PSU in E3SMv2-MPAS (Fig. 10g). This enhancement 

likely stems from the refined vertical mixing scheme in E3SMv2-MPAS, which better captures Arctic halocline dynamics. 

Notably, E3SM-Arctic-OSI outperforms E3SMv2-MPAS in simulating sub-maximum temperature gradients (500–1000 m 

layer), with the Eurasian Basin RMSE reduced by 65% (0.17 vs. 0.49 in v2). This regression is attributed to excessive 

subsurface gradient smoothing in E3SMv2-MPAS caused by persistent moderate diffusion at 10 km Arctic resolution.  420 
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Figure 10. (a–f) 2005–2014 climatological mean temperature profiles: Observations (WOA23 for EB/AAB; observation from 
Muilwijk et al., 2023 for WEB/EEB/Chukchi/Beaufort; red lines), E3SMv2-MPAS (black lines), E3SM-Arctic-OSI (Veneziani et 
al., 2022; blue lines). (g–l) The same as panels (a–f) but for salinity profiles. Basins: the Eurasian Basin (EB, a/g), the Western 
Eurasian Basin (WEB, b/h), the Eastern Eurasian Basin (EEB, c/i), the Amerasian Basin (AAB, d/j), the Chukchi Sea (e/k), the 425 
Beaufort Sea (f/l). 

Physical parameterization upgrades and resolution enhancement demonstrate synergistic effects. E3SMv2-MPAS addresses 

CMIP6/OMIP2 intermediate water simulation challenges through improved subgrid parameterization and the inherent 

advantages of unstructured meshes. The fundamental limitation of traditional eddy parameterization in variable-resolution 

meshes is revealed: complete GM deactivation (κ=0) causes structural distortions, while moderate diffusion (κ=300 m² s⁻¹) 430 

induces over-smoothing. FESOM_4.5km's superior temperature-depth relationships suggest potential solutions through 

MPAS resolution increases or parameterization optimization via neural networks. Opposing regional biases (Eurasian 

overestimation/Amerasian underestimation) indicate current parameterizations lack universality across Arctic dynamical 

regimes, highlighting critical development pathways for next-generation models. 

In order to systematically assess model capabilities in representing multi-scale Arctic thermal variations, an inter-decadal 435 

three-dimensional thermohaline evolution framework is established. Depth-time section comparisons between E3SMv2-

MPAS and EN.4.2.2 (Good et al., 2013) are conducted to analyze spatiotemporal heterogeneity in Arctic oceanic thermal 

structures (Fig. 11). 
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Figure 11. (a) E3SMv2-MPAS simulated temperature profiles (0–1000 m): 1960–1980 climatology (dashed) vs. 2000–2020 440 
climatology (solid). Right: Hovmöller diagram of depth-time evolution (1960–1980 and 2000–2020). (b) The same as panel (a) but 
for EN.4.2.2. (c) The same as panel (a) but for E3SMv2-MPAS minus EN.4.2.2 differences. 

E3SMv2-MPAS successfully reproduces the solar radiation-driven seasonal thermal cycle observed in EN.4.2.2 (Fig. 11). 

Monthly thermohaline profiles (depth-month coordinates) in the upper 500 m of the Eurasian Basin better illustrate 

radiation-dominated seasonal characteristics: summer (June–August) surface temperature peaks coincide with salinity 445 

minima from meltwater inputs, while winter (December–February) shows sub-freezing temperatures (<-1.8°C) and salinity 

recovery (Fig. 12). These core seasonal features are accurately captured, validating high-precision surface flux representation. 
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Figure 12. (a–b) E3SMv2-MPAS simulated 1995–2020 climatological mean (left) temperature and (right) salinity profiles (0–500 m) 
in the Eurasian Basin, with Hovmöller diagrams of monthly variability. (c–d) The same as panels (a–b) but for WOA23. (e–f) The 450 
same as panels (a–b) but for model-observation differences (E3SMv2-MPAS minus WOA23). 

E3SMv2-MPAS demonstrates exceptional multi-temporal simulation capabilities for AW dynamics (Fig. 11). Observations 

reveal stable AW core temperatures (~1.6°C) during 1960–1980, increasing to ~2°C in 2000–2020 with core shallowing 

from 350 m to 300 m (Fig. 11b). E3SMv2-MPAS accurately reproduces both the ~0.4°C warming magnitude and ~50 m 

vertical migration (Fig. 11a). However, regional-specific biases emerge in seasonal variability simulations (Fig. 12). 455 

EN.4.2.2 identifies semi-annual signals in the 200–500 m layer of the Eurasian Basin (September–November peaks at 

~1.5°C; Fig. 12c), linked to winter Atlantification intensification. E3SMv2-MPAS fails to capture this seasonality, producing 

persistent warm biases in 200–400 m layers with overestimated spring–summer core temperatures (0.5–0.8°C; Fig. 12e). 

A systematic validation framework uncovers the multi-tiered optimization characteristics of E3SMv2-MPAS, demonstrating 

superior surface-layer accuracy alongside relatively excellent intermediate-depth representations. Nevertheless, inherent 460 

constraints of current parameterization schemes under polar stratification conditions lead to persistent model-data 

discrepancies, particularly manifested in seasonal phase mismatches. This finding highlights the need to develop improved 

turbulence models based on energy transfer principles (Canuto et al., 2001; Smagorinsky, 1963), which would better connect 

processes across different scales. 

We further investigate the decadal-scale thermohaline variability across Arctic basins. The results reveal regional 465 

heterogeneity in temperature and salinity trends (Fig. 13), likely modulated by differential ocean-ice feedbacks and cross-
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basin transport dynamics. Inter-decadal comparisons (1970s vs. 2000s–2020s; Muilwijk et al., 2023) reveal pan-Arctic 

synchronous warming across the Eurasian Basin sectors and the Amerasian sub-regions (Fig. 13e–h). However, E3SMv2-

MPAS underestimates the warming in the Amerasian Basin (0.1–0.5°C biases; Fig. 13c–d and g–h), indicating limitations in 

AW transport pathways and heat redistribution. 470 

 
Figure 13. (a–d) Vertical profiles of climatological mean temperature (red curves) and salinity (blue curves) in the Western 
Eurasian Basin (WEB, a), the Eastern Eurasian Basin (EEB, b), the Chukchi Sea (c), and the Beaufort Gyre (d) from E3SMv2-
MPAS: dashed lines denote 1970s (1971–1979), solid lines represent 2000s–2010s (2001–2019). (e–f) Corresponding observational 
profiles from Muilwijk et al., (2023) with identical temporal averaging. 475 

In the Eurasian Basin upper layers (~100–450 m; Fig. 13a–b and e–f), observations show dual-mode thermal evolution: 

shallow warming above temperature cores (100–250 m) contrasts with systematic warming below (250–450 m). Model 

simulations exhibit spatial heterogeneity: 0.2±0.1°C underestimation of shallow warming contrasts with excessive vertical 

response ranges (250–1000 m vs. observed 250–450 m). Notably, simulated AW layer thickening in the eastern Eurasian 

Basin during 2000s–2010s lacks observational support (Fig. 13b and f). 480 
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In the Amerasian Basin side, observations indicate basin-wide warming from core layers to AW bottom (~1000 m), with the 

Chukchi Sea showing ΔT=0.2±0.1°C (Fig. 13c–d and g–h). While successfully reproducing Chukchi thermal trends, 

E3SMv2-MPAS exhibits systematic Beaufort Sea deviations. Salinity changes primarily occur in the upper 300 m of the 

Amerasian Basin (observed ΔS=-0.3±0.2 PSU), with the model failures in capturing the freshening of the Chukchi Sea and 

underestimation of trends in the shallow-layer (<80 m) of the Beaufort Sea. 485 

E3SMv2-MPAS demonstrates significant regional dependence in simulating interdecadal thermohaline structure changes 

across Arctic basins. Systematic biases persist between model outputs and observational data, particularly in AW layer 

thickness evolution, vertical extent of subsurface warming processes, and strength of surface freshening signals. These 

discrepancies likely originate from suboptimal parameterization schemes for key physical processes such as mesoscale eddy 

activities and shelf-basin interactions. 490 

AW demonstrates systematic cooling and freshening (temperature and salinity reduction) during its transport from the 

Eurasian to the Amerasian Basin (Fig. 8), a transformation likely modulated by baroclinic adjustment processes in the inter-

basin transition zone. These processes, known to govern cross-basin material-energy exchange (Aksenov et al., 2016), 

necessitate a three-dimensional thermohaline diagnostic approach. To this end, we analyze coordinated meridional sections 

along 145°W (the Amerasian Basin) and 70°E (the Eurasian Basin), constructing a unified framework to evaluate 495 

spatiotemporal variability in AW properties (Fig. 14). WOA23-based comparisons confirm E3SMv2-MPAS's capability in 

reproducing inter-basin gradient characteristics through three key aspects: (1) AW thermal attenuation: Successful 

simulation of core temperature decreases from the Eurasian to the  Amerasian Basin, replicating thermodynamic dissipation 

processes; (2) Stratification depth displacement: Realistic representation of westward-decreasing upper boundary depths 

matching slope current adjustments; (3) Surface freshwater transport effects: Accurate reproduction of the surface salinity 500 

depression in the Amerasian Basin relative to the Eurasian Basin, validating appropriate parameterization of Pacific-origin 

freshwater influx mechanisms. Persistent thermal biases in the Eurasian Basin emerge in 145°W sections, with maximum 

+2°C warm deviations in 100–500 m core layers (Fig. 14e). These discrepancies may originate from overestimation of the 

Fram Strait heat fluxes or inadequate parameterization of mesoscale mixing. Despite absolute temperature biases, maintained 

meridional heat transport gradients confirm fundamental physical framework validity for large-scale advection processes. 505 
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Figure 14. (a–b) E3SMv2-MPAS simulated 1995–2020 climatological (left) temperature and (right) salinity distributions along the 
145°W–70°E transect (location mapped in Fig. 1b). (c–d) The same as panels (a–b) but for WOA23. (e–f) The same as panels (a–b) 
but for the model-observation differences (E3SMv2-MPAS minus WOA23). 

4 Atlantic Water Layer States 510 

4.1 Parametric Characterization of Atlantic Water Core 

As demonstrated in Section 3, model biases predominantly manifest in two critical parameters: AW core temperature 

(AWCT) and depth (AWCD). These metrics, defined as the maximum temperature within 150–900 m depth and its 

corresponding depth (Khosravi et al., 2022; Shu et al., 2022; Wang et al., 2024), are employed to evaluate E3SMv2-MPAS's 

performance in reproducing spatiotemporal features of AW (Fig. 15). Observational AWCT/AWCD datasets from Richards 515 

et al., (2022) reveal successful model reproduction of baseline spatial gradients: decreasing AWCT and increasing AWCD 

from the Eurasian to the Amerasian Basin, though with marked regional heterogeneity (Fig. 15a–d). Systematic 

overestimation of AWCT (+0.5°C) is identified in the western Eurasian Basin off-shelf regions (high-latitude sectors), 

potentially linked to biased inflow heat flux allocation in the Fram Strait. Similar positive deviations (+0.5°C) in the 

Beaufort Sea maybe suggest inadequate Pacific inflow mixing parameterization. AWCD simulations demonstrate higher 520 

accuracy, with minor underestimation (ΔZ<100 m) in the eastern Eurasian Basin. 
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Figure 15. (a–b) 1995–2018 climatological mean Atlantic Water Core Temperature (AWCT) spatial distributions: (a) E3SMv2-
MPAS vs. (b) observation from Richards et al., (2022). (c–d) The same as panels (a–b) but for Atlantic Water Core Depth (AWCD). 
(e–f) Temporal evolution of basin-averaged AWCT (top row) and AWCD (bottom row) in the Eurasian Basin (e) and the 525 
Amerasian Basin (f): E3SMv2-MPAS (black) versus observations (red). 
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Interannual variability (1995–2018) is adequately captured through basin-averaged AWCT/AWCD magnitudes (Fig. 15e–f). 

E3SMv2-MPAS successfully reproduces AWCT warming trends in both basins, AWCD shoaling in the Eurasian Basin, and 

1995–2013 AWCD declines in the Amerasian Basin. However, post-2013 increases in AWCD in the Amerasian Basin 

remain unresolved. While demonstrating credibility in long-term trend simulations, model responsiveness to decadal-scale 530 

climatic shifts requires boundary condition dynamization and mixing process optimization – critical for predicting nonlinear 

Atlantification trajectories. 

Cross-validation under the OMIP2 framework (Wang et al., 2024) reveals that among five resolution-varied model groups, 

only FESOM_4.5km, MOM_3.6km, and HYCOM_3.6km demonstrate high AWCT spatial pattern simulation skills (Fig. 

16). FESOM_4.5km outperforms E3SMv2-MPAS (10 km) in representing the western Eurasian Basin shelf-basin gradients, 535 

but underperforms in the Amerasian Basin (Fig. 16b–c). Low-resolution models exhibit a systematic underestimation of 

AWCT, with FESOM_24km being the exception, reaffirming unstructured meshes' polar ocean modeling advantages (Fig. 

16h–l). 

 
Figure 16. 1995–2018 climatological mean Atlantic Water Core Temperature (AWCT) spatial patterns from (a) observations 540 
(Richards et al., 2022), (b) E3SMv2-MPAS, and (c–l) OMIP2 models (Wang et al., 2024). Middle/bottom rows: High-resolution 
and corresponding low-resolution model pairs from OMIP2. 
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To address the systematic underestimation of Atlantification in model simulations (mentioned in Section 1), five key 

parameters are quantified: AWCT, AWCD, AW upper boundary (0°C isotherm; Meyer et al., 2017), AW layer thickness 545 

(between 0°C isotherms), and AW heat content. By analyzing their spatiotemporal response characteristics, this study 

investigates the trans-decadal evolution of Atlantification. 

The AW heat content is calculated as follows (Polyakov et al., 2017): 

𝑄𝑄 = � 𝜌𝜌𝑤𝑤
𝑧𝑧2

𝑧𝑧1
𝑐𝑐𝑝𝑝�𝜃𝜃 − 𝜃𝜃𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓�𝑑𝑑𝑑𝑑, 

where 𝑧𝑧1/𝑧𝑧2 denote layer boundaries, 𝜌𝜌𝑤𝑤 seawater density, 𝑐𝑐𝑝𝑝 specific heat of seawater, and 𝜃𝜃𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 freezing temperature. 550 

Both basins exhibit coordinated changes during 1960s–1980s and 2000s–2020s: AWCT increases, AWCD decreases, AW 

upper boundary shallows, layer thickness expands, and heat content accumulates (Fig. 17). Post-2000s acceleration of these 

trends shows tight coupling with enhanced Atlantic meridional heat transport under Arctic amplification. E3SMv2-MPAS 

captures the key thermodynamic signatures of Atlantification (the Eurasian Basin vs. the Amerasian Basins between 2000–

2020), aligning closely with observationally derived mechanisms of Atlantic Water intrusion and its climatic impacts  555 

(Polyakov et al., 2017): (1) A 1°C gradient in AWCT between the Eurasian and Amerasian Basins, consistent with zonal 

heat dissipation; (2) A 130-m shallower AWCD in the Eurasian Basin, reflecting intensified vertical mixing due to sea ice 

loss; (3) Synergistic changes in AW layer thickness and heat content (100 m thinner layer with +4000 MJ·m⁻² in the 

Eurasian Basin), confirming advective-diffusive redistribution. 

 560 
Figure 17. (a–b) 1960–1980 vs. 2000–2020 climatological mean Atlantic Water Core Temperature (AWCT) in the (a) Eurasian and 
(b) Amerasian Basins. (c–j) The same as panels (a–b) but for Atlantic Water Core depth (AWCD; c–d), Atlantic Water layer 
upper boundary depth (AWupdepth; e–f), thickness (AWthickness; g–h), and heat content (Q_AW; i–j). 

This multi-scale validation confirms E3SMv2-MPAS's physical credibility in reproducing Atlantification mechanisms: 

cascading heat flux-stratification-heat content responses and inter-basin thermodynamic evolution. The model thus provides 565 

critical process fidelity for predicting Arctic oceanic thermal threshold transitions. 
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4.2 Atlantic Water-Surface Coupling 

The AW layer constitutes the most critical oceanic heat reservoir in the Arctic Ocean (Carmack et al., 2015b), containing 

sufficient thermal energy to melt all Arctic sea ice within several years (Turner, 2010) and capable of dissolving 3–4 times 

the current ice volume (Carmack et al., 2015a). A pronounced halocline characterized by rapidly increasing salinity with 570 

depth typically separates the cold, low-salinity surface waters from the warm, saline AW in the Eurasian and Amerasian 

Basins. This strong stratification effectively inhibits vertical water mass exchange (Peralta-Ferriz and Woodgate, 2015), 

isolating the AW layer from sea ice and mixed layer interactions (Aagaard et al., 1981; Richards et al., 2022). Under these 

physical constraints, vertical heat transport primarily occurs through molecular-scale processes involving internal wave 

breaking and double-diffusive mixing (Davis et al., 2016). However, since the 1970s, progressive weakening of the eastern 575 

Eurasian Basin halocline has been documented (Polyakov et al., 2010; Steele and Boyd, 1998), culminating in its complete 

failure as an effective thermal barrier for intermediate AW heat by the mid-2010s (Polyakov et al., 2020a). Stratification 

collapse has triggered a regime shift from double-diffusive dominance to shear-driven turbulent mixing, fundamentally 

altering vertical heat flux dynamics (Polyakov et al., 2020a). 

The KPP scheme employed by E3SMv2-MPAS driven by Gradient Richardson Number (Ri) physics (Zhu et al., 2022). This 580 

study evaluates whether this parameterization scheme, combined with the model's unstructured mesh capability, adequately 

resolves Arctic vertical thermal coupling features, particularly in the Eurasian Basin. A thermal linkage framework is 

established between the upper (10 m) and intermediate (AW core layer, 400 m) ocean layers to address two critical aspects: 

(1) spatiotemporal delay characteristics in vertical heat signal propagation relative to AW transport timescales, and (2) 

potential regime shifts in interlayer coupling mechanisms under climate warming. This diagnostic framework provides 585 

dynamic constraints for optimizing vertical mixing parameterizations while elucidating climate impacts of upper-ocean 

thermal variability. 

During 1960–1980 baseline conditions (zero time lag), statistically significant positive correlations (p<0.05) between AW 

layer and surface temperatures are confined to the Norwegian Sea, indicating direct advective heat modulation (Fig. 18a). 

Lagged correlation analysis reveals basin-scale inertial transport characteristics: localized positive correlations emerge in the 590 

Eurasian Basin at 24-month lag, expanding basin-wide by 36 months (Fig. 18b–h). This spatiotemporal inertia is attributed to: 

(1) Basin-scale recirculation timescales required for AW mass circumpolar transport (e.g., 2-year lag between the Fram 

Strait and the eastern Eurasian Basin 250 m temperatures; Polyakov et al., 2020b), and (2) efficiency limitations in 

subsurface mixing processes. 
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 595 
Figure 18. (a) 1960–1980 climatological mean correlation between surface (5 m) and mid-depth (400 m) temperatures. (b–h) 
Lagged correlations at 6-month intervals (lag 6 mons to 42 mons). Black dots indicate significance (p<0.05). 

The 1995–2020 period exhibits fundamental regime transition: immediate basin-wide positive correlations (p<0.05) emerge 

along AW pathways (from the Fram Strait to the Eurasian Basin) under zero-lag conditions, maintaining stable correlation 

strength through 42-month lags (Fig. 19). This instantaneous response pattern reflects multiscale Arctic system changes: (1) 600 

Increased AWCT with decreased AWCD shortens vertical diffusion pathways, indicating intensified "Atlantification" 

(Polyakov et al., 2017); (2) Stratification weakening from sea ice loss enhances cross-layer turbulent mixing efficiency 

(Kwok, 2018; Onarheim et al., 2018; Polyakov et al., 2020a). 
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Figure 19. The same as Fig. 18, but for 1995–2020 period. 605 

A fundamental regime shift in Arctic intermediate-to-surface thermal coupling mechanisms under climate warming is 

revealed through cross-temporal-scale lagged correlation diagnostics: transitioning from historical basin-scale inertial 

transport patterns to contemporary instantaneous response modes. This regime shift, driven by altered AW thermohaline 

properties and reduced stratification stability, enhances vertical heat leakage efficiency from intermediate layers. Model 

evaluation demonstrates that while the KPP scheme captures accelerated heat transport trends, systematic biases persist in 610 

nonlinear responses to shear mixing (Figs. 18–19). Future research directions emphasize developing scale-aware 

parameterizations incorporating high-resolution turbulence observations to improve model capabilities in predicting Arctic 

energy transport regime shifts. 

5 Conclusions 

This study systematically evaluates the Arctic ocean-sea ice simulation capabilities of E3SMv2-MPAS through multi-source 615 

observations (in situ profiles, satellite remote sensing, optimum interpolation dataests), reanalysis products (NSIDC, 

HadISST1, ERA5, PIOMAS) and model outputs (CMIP6, OMIP2), with focus on core parameters including sea ice 

(concentration/thickness; SIC/SIT), surface thermohaline properties (sea surface temperature/salinity; SST/SSS), three-

dimensional thermohaline structures, Atlantic Water (AW) heat characteristics, and vertical thermal linkages. Spatial 

distribution patterns, seasonal-to-decadal variability, and three-dimensional evolutionary processes are comprehensively 620 

analyzed. 
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E3SMv2-MPAS demonstrates significant advantages in Arctic climatology simulations: (1) Accurate representation of 

spatial heterogeneity and temporal evolution trends in SIC, SIT, and SST (Figs. 3a–g, 4a–c, 6a–c); (2) Superior simulation 

accuracy for 1995–2020 SIC decline trends compared to Hadley and ERA5 reanalysis products (NSIDC-benchmarked; Fig. 

3h); (3) Enhanced SIT reliability in the Greenland Sea and the Canadian Archipelago versus PIOMAS (ICESat-validated; 625 

Fig. 5); (4) Consistent SSS spatial patterns and seasonal evolution with leading reanalysis products including HYCOM and 

GLORYS12 (Fig. 7; Hall et al., 2021). 

E3SMv2-MPAS successfully addresses longstanding Arctic simulation biases through synergistic integration of high-

resolution Arctic domains, flexible global unstructured meshes, and suitable mesoscale eddy parameterization: (1) Precise 

reproduction of AW layer thickness/depth and core temperatures (Figs. 8–10, 15–16), achieving minimal RMSE in three-630 

dimensional thermohaline simulations across Arctic basins compared to CMIP6 and OMIP2 models (Tables 1–2); (2) 

Effective capture of AW warming trends including decadal-scale intermediate layer heating and vertical shoaling of warm 

cores (Figs. 11, 13); (3) Realistic simulation of accelerated Atlantification processes, evidenced by post-2000 intensification 

in AW core temperature and heat content while reduced AW core depth, upper boundary and layer thickness, and 

instantaneous surface-intermediate heat transfer in the Eurasian Basin (Figs. 17–19). Additional breakthroughs include 635 

successful representation of solar-driven seasonal upper-ocean thermal cycles (Fig. 12) and inter-basin water mass gradient 

evolution from the Eurasian Basin to the Amerasian Basin (e.g., AW thermohaline attenuation, vertical stratification shifts, 

and surface freshwater transport effects; Fig. 14). These advancements establish critical numerical platforms for 

investigating Arctic stratification destabilization and cross-scale energy transfer mechanisms, particularly for quantifying 

mesoscale modulation of ocean-sea ice-atmosphere feedbacks. 640 

Notwithstanding these achievements, key limitations persist: (1) Systematic overestimation of SIT in the Canadian Basin 

(0.5–1 m bias; Fig. 5), potentially linked to misrepresentation of Beaufort Gyre intensity enhancing ice convergence, 

requiring verification through eddy kinetic energy budget analysis; (2) Coordinated underestimation of SST/SSS and 

overestimation of SIC in the Greenland and Barent Seas (Figs. 3a–g, 4a–c, 6a–c), attributable to underestimated efficiency of 

vertical mixing in intermediate-to-surface heat transfer, recommending implementation of shear turbulence closure schemes 645 

or dynamic mixed-layer penetration mechanisms; (3) Residual overestimation of AW core temperature (0–1°C) and errors in 

seasonal Atlantification phase (Figs. 8–10, 13), reflecting constraints of mesoscale parameterization on water mass 

transformation, necessitating development of depth-dependent eddy energy dissipation parameterizations; (4) Asymmetries 

in regional decadal thermohaline evolution (e.g., underestimated upper-layer warming and overestimated deep warming in 

the Eurasian Basin, unresolved mid-layer warming and upper-layer freshening trends in the Amerasian Basin; Fig. 13), 650 

potentially arising from inadequate resolution of key gateways (e.g., Fram Strait) and oversimplified parameterizations of 

shelf-basin interactions, demanding optimization through nested grids or regional mesh refinement. 

This study confirms that E3SMv2-MPAS significantly enhances simulation capabilities for Arctic oceanic thermal structures 

and cross-layer coupling processes through integration of high-resolution unstructured meshes with optimized physical 

parameterization schemes, establishing crucial technical references for polar climate model development in the CMIP7 era. 655 
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However, persistent biases highlight remaining challenges in mesoscale process representation and boundary flux constraints. 

Future priorities include: (1) Development of process-oriented parameterizations enabling eddy-mixing-stratification 

feedback coupling; (2) Implementation of Arctic-focused data assimilation systems to reduce boundary forcing uncertainties; 

(3) Execution of perturbed-parameter ensemble experiments to quantify sensitivity thresholds. Such improvements will 

enhance predictive capabilities for Arctic amplification and tipping point dynamics, ultimately supporting evidence-based 660 

climate governance. 

 

 

 

Code and data availability. The E3SM model code is publicly available via the https://github.com/E3SM-665 

Project/E3SM/releases. Instructions on how to configure and execute E3SM are available at https://e3sm.org/model/running-

e3sm/e3sm-quick-start/. All simulations detailed in Section 2.1 can be regenerated by executing the code hosted in this 

repository: https://doi.org/10.5281/zenodo.15493256 (Lv, 2025). Preprocessing of E3SMv2-MPAS outputs utilized nco-

5.1.1, accessible through the https://nco.sourceforge.net/. The JRA55-v1.5 atmospheric forcing data driving the simulations 

were obtained from the https://aims2.llnl.gov/search/input4mips/. ETOPO 2022 bathymetry was derived from the 670 

https://www.ncei.noaa.gov/products/etopo-global-relief-model. Model evaluations employed the following observational and 

reanalysis products: Sea ice concentration: NSIDC (https://noaadata.apps.nsidc.org/NOAA/G02202_V4/north/aggregate/), 

Met Office Hadley Centre observational datasets (https://www.metoffice.gov.uk/hadobs/), and ERA5 monthly single-level 

data (https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels-monthly-means?tab=overview); Sea ice 

thickness: PIOMAS (http://psc.apl.uw.edu/research/projects/arctic-sea-ice-volume-anomaly/data/model_grid), PIOMAS-675 

20C reconstruction (https://psc.apl.uw.edu/research/projects/piomas-20c/) and ICESat/ICESat-2 L4 gridded products 

(https://nsidc.org/data/issitgr4/versions/1 and https://nsidc.org/data/is2sitmogr4/versions/3); Sea surface properties: OISST 

(https://www.ncei.noaa.gov/products/optimum-interpolation-sst) and OISSS (https://www.esr.org/data-

products/oisss/overview/); Oceanographic profiles: WOA2023 (https://www.ncei.noaa.gov/products/world-ocean-atlas), 

EN.4.2.2 objective analyzes (https://www.metoffice.gov.uk/hadobs/en4/). In situ observational profiles from four key Arctic 680 

regions (the western/eastern Eurasian Basin, the Chukchi Sea, and the Beaufort Sea), vertical profiles from 13 CMIP6 

models, thermohaline profiles and Atlantic Water core temperature outputs from five OMIP2 ensemble groups, along with 

E3SM-Arctic-OSI simulations and Atlantic Water core temperature and depth observational benchmarks, are described in 

the main text. Detailed metadata specifications and data access instructions for these datasets are provided in the 

corresponding references cited therein. 685 
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